《基于免疫计算的机器学习方法及应用》徐雪松【文字版_PDF电子书_推荐】
内容简介:
大数据时代的机器学习和数据挖掘技术的作用日渐重要,受到了广泛的关注。本书立足于工程应用,将免疫智能计算方法引入机器学习领域,致力于研究基于生物免疫原理的机器学习软计算方法,以免疫计算智能的基本原理为线索,对其研究状况加以系统性的论述,从理论、算法构建及工程应用等方面对免疫机器学习进行介绍和分析。针对关联规则挖掘、数据分类、数据聚类、属性约简等机器学习及生物信息大数据挖掘等具体问题,提出一系列新方法,并结合深度学习和张量计算探讨了机器学习软计算方法的*发展动态和方向。
作者简介:
徐雪松,副教授,湖南大学控制科学与工程专业博士,国防科学技术大学管理科学与工程专业博士后。美国布兰迪斯大学Volan National Center for Complex Systems访问学者、美国哈佛大学 Data Science Center 研究员、国家高级项目管理师、数据分析师。湖南省青年骨干教师培养对象,湖南商学院麓山青年学者。现为湖南省区域战略与规划研究基地——低碳技术经济研究中心副主任、湖南省物联网协会理事成员、IEEE Member、ACM Member及计算机学会会员。
主要从事机器学习、复杂系统智能决策和方法研究工作。主持国家、教育部及省级课题11项,出版学术专著2部,主编省十二五规划教材1部。在国际SCI源刊及国内《电子学报》《仪器仪表学报》 《应用数学学报》 《情报学报》 《统计研究》 《系统工程理论与实践》《控制与决策》等刊物发表论文40余篇。担任国际SCI期刊Asian Journal of Control、Applied Mathematics & Information Sciences及《自动化学报》等知名期刊审稿人。授权国家发明专利2项、实用新型专利2项和国家软件著作权5项。
目 录:
目录
第1 章 诸论...............................................................................................1
1.1 引言............................................................................................................. 2
1.2 人工智能与机器学习................................................................................. 3
1.3 数据挖掘与机器学习................................................................................. 7
1.4 仿生计算智能与机器学习....................................................................... 12
1.5 免疫计算与机器学习............................................................................... 16
1.6 本书的内容及结构................................................................................... 20
参考文献........................................................................................................... 22
第2 章机器学习主流技术与方法............................................................. 29
2.1 机器学习的发展....................................................................................... 30
2.2 机器学习中的统计分析方法................................................................... 34
2.2.1 线性回归分析............................................................................... 38
2.2.2 非线性回归分析........................................................................... 40
2.2.3 多元线性回归分析....................................................................... 42
2.3 机器学习中的现代技术方法................................................................... 44
2.3.1 粗糙集........................................................................................... 45
2.3.2 遗传算法....................................................................................... 50?
2.3.3 神经网络....................................................................................... 54
2.3.4 深度学习....................................................................................... 60
2.3.5 支持向量机................................................................................... 62
2.3.6 强化学习....................................................................................... 72
2.3.7 度量学习....................................................................................... 75
2.3.8 多核学习....................................................................................... 77
2.3.9 集成学习....................................................................................... 78
2.3.10 主动学习..................................................................................... 80
2.3.11 迁移学习..................................................................................... 83
参考文献........................................................................................................... 85
第3 章免疫计算的基础原理.................................................................... 95
3.1 免疫计算生物学基础............................................................................... 96
3.1.1 免疫学基本概念........................................................................... 96
3.1.2 生物免疫系统的结构及组成....................................................... 97
3.1.3 免疫系统功能及机制................................................................. 102
3.2 人工免疫基本原理..................................................................................113
3.2.1 人工免疫系统基本概念..............................................................115
3.2.2 人工免疫系统基本原理及机制..................................................116
3.3 免疫计算学习及优化方法..................................................................... 120
参考文献......................................................................................................... 123
第4 章基于免疫聚类竞争的关联规则挖掘方法..................................... 127
4.1 基本概念及问题描述............................................................................. 128
4.2 数据表达及初始化................................................................................. 131
4.3 免疫关联规则挖掘................................................................................. 132
4.3.1 抗体聚类与竞争克隆................................................................. 132
4.3.2 抗体编码及初始化..................................................................... 135
4.3.3 抗体亲和力定义......................................................................... 138
4.3.4 抗体操作..................................................................................... 138
4.4 免疫关联规则挖掘方法及分析............................................................. 140
4.5 仿真实验及应用..................................................................................... 143
4.5.1 UCI 数据集仿真实验................................................................. 143
4.5.2 教学质量规则挖掘与分析......................................................... 145
参考文献......................................................................................................... 147
第5 章基于小生境免疫粗糙集属性约简方法......................................... 153
5.1 问题描述................................................................................................. 154
5.2 基本概念及理论..................................................................................... 155
5.3 属性信息编码及小生境免疫优化......................................................... 156
5.3.1 疫苗提取及初始抗体种群......................................................... 156
5.3.2 抗体编码及接种疫苗................................................................. 159
5.4 小生境免疫共享机制及免疫算子操作................................................. 160
5.5 算法执行过程......................................................................................... 163
5.6 试验仿真及应用..................................................................................... 165
5.6.1 实验1.......................................................................................... 165
5.6.2 实验2.......................................................................................... 168
5.6.3 实验3.......................................................................................... 170
参考文献......................................................................................................... 172
第6 章基于免疫阴性选择的数据分类器................................................ 178
6.1 问题描述................................................................................................. 179
6.2 基本概念及原理..................................................................................... 180
6.3 文本分类规则编码................................................................................. 182
6.3.1 个体编码..................................................................................... 182
6.3.2 亲和力定义................................................................................. 183
6.3.3 免疫优化..................................................................................... 184
6.4 掩码匹配的否定选择分类器................................................................. 184
6.5 免疫进化分类实现................................................................................. 186
6.6 仿真实验及应用..................................................................................... 187
6.6.1 实验一......................................................................................... 187
6.6.2 实验二......................................................................................... 188
参考文献.....